
Agent-Based Systems

Agent-Based Systems

Michael Rovatsos
mrovatso@inf.ed.ac.uk

Lecture 2 – Abstract Agent Architectures

1 / 16

Agent-Based Systems

Where are we?

Last time . . .

• Introduced basic and advanced aspects of agency

• Situatedness, autonomy and environments

• Reactivity, proactiveness and social ability

• Compared agents to other types of systems

Today . . .

• Abstract Agent Architectures

2 / 16

Agent-Based Systems

Abstract agent architectures

• Purpose of this lecture: formalise what we have discussed so far

• Will result in an abstract specification of agents

• Not about concrete agent architectures which we can actually
implement (but see later)

• Assume a discrete, finite set of environment states E = {e, e′, . . .}
(or approximation of continuous state space)

• Assume action repertoire of agents is defined by Ac = {α, α′, . . .}
• Idea: environment starts at some state and agent chooses action

in each state which leads to new (set of) state(s)

3 / 16

Agent-Based Systems

Abstract agent architectures

• Run = sequence of interleaved environment states and actions

r : e0
α0→ e1

α1→ e2
α2→ · · · eu−1

αu−1→ eu

• Define R = {r , r ′, . . .} the set of all such possible finite sequences

• RAc /RE subsets of R that end with an action/environment state

• State transformer function is a function τ : RAc → ℘(E)

• τ maps each run ending with an agent action to the set of possible
resulting states

• Depends on history of previous states
• Uncertainty/non-determinism modelled by allowing for multiple

successor states

• If τ(r) = ∅ system terminates (we assume it always will eventually)

4 / 16

Agent-Based Systems

Abstract agent architectures

• Next, we have to specify how agent functions

• Agents choose actions depending on states

• In contrast to environments, we assume them to be deterministic

• In the most general sense an agent is a function

Ag : RE → Ac

• If set of all agents is AG, define system as pair of an agent Ag and
an environment Env

• Denote runs of system by R(Ag,Env) and assume they are all
terminal (and thus finite)

5 / 16

Agent-Based Systems

Abstract agent architectures
• A sequence (e0, α0, e1, α1, . . .) represents a run of agent Ag in

environment Env = 〈E , eo, τ〉 if
(i) e0 is initial state of E
(ii) α0 = Ag(e0)
(iii) For u > 0

eu ∈ τ((e0, α0, e1, . . . , αu−1))

and
αu = Ag((e0, α0, e1, . . . , eu))

• Two agents Ag1 and Ag2 are called behaviourally equivalent with
respect to environment Env iff

R(Ag1,Env) = R(Ag2,Env)

• If this is true for any environment Env , the are simply called
behaviourally equivalent

6 / 16

Agent-Based Systems

Purely reactive agents

• Pure reactivity means basing decisions only on present state
• History is not taken into account
• “Behaviourist” model of activity: actions are based on

stimulus-response schemata
• Formally they are described by a function

Ag : E → Ac

• Every purely reactive agent can be mapped to an agent defined on
runs (the reverse is usually not true)

• Example: thermostat with two environment states

Ag(e) =

{
heater off if e = temperature OK

heater on else

7 / 16

Agent-Based Systems

Perception and action

• Model so far is easy, but more design choices have to be made to
turn it into more concrete agent architectures

• Agent architectures describe the internal structure of an agent
(data structures, operations on them, control flow)

• First steps: define perception and action subsystems
• Define functions see : E → Per and action : Per∗ → Ac where

• Per is a non-empty set of percepts that the agent can obtained
through its sensors

• see describes this process of perception and action defines
decisions based on percept sequences

• Agent definition now becomes Ag = 〈see, action〉

8 / 16

Agent-Based Systems

Perception and action
• If e1 6= e2 ∈ E and see(e1) = see(e2) we call e1 and e2

indistinguishable
• Let x =“the room temperature is OK” and y=“Tony Blair is Prime

Minister” be the only two facts that describe environment
• Then we have E = {{¬x ,¬y}︸ ︷︷ ︸

e1

, {¬x , y}︸ ︷︷ ︸
e2

, {x ,¬y}︸ ︷︷ ︸
e3

, {x , y}︸ ︷︷ ︸
e4

}

• If percepts of thermostat are p1 (too cold) and p2 (OK),
indistinguishable states occur (unless PM makes room chilly)

see(e) =

{
p1 if e = e1 ∨ e = e2

p2 if e = e3 ∨ e = e4

• We write e ∼ e′ (equivalence relation over states)
• The coarser these equivalence classes, the less effective is

perception (if | ∼ | = |E | agent is omniscient)
9 / 16

Agent-Based Systems

Agents with state
• Mapping from runs to actions somewhat counter-intuitive
• We should rather think of agents as having internal states to

reflect the internal representation they have of themselves and
their environment

• Assuming an agent has a set I of internal states, we can define its
abstract architecture as follows:

see : E → Per

action : I → Ac

next : I × Per → I

• Behaviour: If initial internal state is i ,
• Observe environment, obtain see(e)
• Update internal state to be i ′ ← next(i, see(e))
• Action selection given by action(i ′)
• Enter next cycle with i ← i ′

10 / 16

Agent-Based Systems

Telling an agent what to do

• Fundamental aspect of autonomy:
We want to tell agent what to do, but not how to do it

• After all, this is what we want to be different from systems not
based on intelligent agents

• Roughly speaking, we can specify
• task to perform
• (set of) goal state(s) to be reached
• to maximise some performance measure

• We start with the latter, which is based on utilities associated with
states

11 / 16

Agent-Based Systems

Utilities

• Utilities describe “quality” of a state through some numerical value

• Doesn’t specify how to reach preferred states

• Utility functions: u : E → R
• Using this, we can define overall utility of an agent to be

• Worst utility of visited states (pessimistic)
• Best utility of visited states (optimistic)
• Average utility of visited states
• . . .

• Disadvantage: long-term view is difficult to take into account

• We can use runs instead: u : R → R

12 / 16

Agent-Based Systems

Optimal agents
• Assuming the utility function u is bounded

(i.e. ∃k ∈ R ∀r ∈ R .u(r) ≤ k) we can define what optimal agents
are:

An optimal agent is one that maximises expected utility
(MEU principle)

• To define this, assume P(r |Ag,Env) is the probability that run r
occurs when agent Ag is operating in environment Env

• For optimal agent, the following equation holds:

Agopt = arg max
Ag∈AG

∑
r∈R(Ag,Env)

P(r |Ag,Env)u(r)

• Often notion of bounded optimal agent is more useful, since not
any function Ag : RE → Ac can be implemented on any machine

• Define AGm = {Ag|Ag ∈ AGcan be implemented on machine m}
and restrict maximisation to AGm above

13 / 16

Agent-Based Systems

Predicate task specifications

• Often more natural to define a predicate over runs (idea of success
and failure)

• Assume u ranges over {0, 1}, run r ∈ R satisfies a task
specification if u(r) = 1 (fails, else)

• Define: Ψ(r) iff u(r) = 1 and a task environment 〈Env ,Ψ〉 with
T E the set of all task environments

• Further, let RΨ(Ag,Env) = {r |r ∈ R(Ag,Env) ∧Ψ(r)} the set of
runs of agent Ag that satisfy Ψ

• Ag succeeds in task environment 〈Env ,Ψ〉 iff
RΨ(Ag,Env) = R(Ag,Env)

• Quite demanding (pessimistic), we may require instead that there
exists such a run (∃r ∈ R(Ag,Env) .Ψ(r))

• We can extend state transformer function τ by probabilities and
require that P(Ψ|Ag,Env) =

∑
r∈RΨ(Ag,Env) P(r |Ag,Env)

14 / 16

Agent-Based Systems

Achievement and maintenance tasks

• Two very common types of tasks:
• “achieve state of affairs ϕ”
• “maintain state of affairs ϕ”

• Achievement tasks are defined by a set of goal states
• Formally: 〈Env ,Ψ〉 is an achievement task iff

∃G ⊆ E ∀r ∈ R(Ag,Env) .Ψ(r)⇔ ∃e ∈ G .e ∈ r

• Maintenance tasks are about avoiding certain failure states
• Formally: 〈Env ,B〉 is a maintenance task iff

∃B ⊆ E ∀r ∈ R(Ag,Env) .Ψ(r)⇔ ∀e ∈ B .e /∈ r

• There also exist more complex combinations of these

15 / 16

Agent-Based Systems

Summary

• Discussed abstract agent architectures

• Environments, perception & action

• Purely reactive agents, agents with state

• Utility-based agents

• Task-based agents, achievement/maintenance tasks

• Next time: Deductive Reasoning Agents

16 / 16

